J. Fluid Mech. (2001), vol. 440, pp. 293-326. Printed in the United Kingdom 293
© 2001 Cambridge University Press

Three-dimensional theory of water impact.
Part 1. Inverse Wagner problem
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The three-dimensional problem of blunt-body impact onto the free surface of an ideal
incompressible liquid is considered within the Wagner theory. The theory is formally
valid during an initial stage of the impact. The problem has been extensively studied
in both two-dimensional and axisymmetric cases. However, there are no exact truly
three-dimensional solutions of the problem even within the Wagner theory. At present,
three-dimensional effects in impact problems are mainly handled approximately by
using a sequence of two-dimensional solutions and/or aspect-ratio correction factor.
In this paper we present exact analytical rather than approximate solutions to the
three-dimensional Wagner problem. The solutions are obtained by the inverse method.
In this method the body velocity and the projection on the horizontal plane of the
contact line between the liquid free surface and the surface of the entering body
are assumed to be given at any time instant. The shape of the impacting body
is determined from the Wagner condition. It is proved that an elliptic paraboloid
entering calm water at a constant velocity has an elliptic contact line with the
free surface. Most of the results are presented for elliptic contact lines, for which
analytical solutions of the inverse Wagner problem are available. The results obtained
can be helpful in testing other numerical approaches and studying the influence of
three-dimensional effects on the liquid flow and the hydrodynamic loads.

1. Introduction

In spite of increasing needs of industry, the three-dimensional impact problem is far
from being solved yet. Accurate numerical methods to solve the problem even within
the Wagner approximation are urgently required, in particular by ship designers to
properly evaluate the impact loads in severe sea conditions. Real impact processes are
three-dimensional in nature and estimations of the loads from strip theory may not
be accurate enough, especially close to the ship’s bow where impact mainly occurs.
The initial stage of the impact is of particular interest. This stage, during which the
hydrodynamic loads take their maximum values, gives estimates necessary for the
dynamic-strength calculation of an impacting structure and supplies the initial data
for further numerical calculations of the three-dimensional hydrodynamic problem.

The three-dimensional unsteady problem of liquid flow due to the impact of a
blunt body onto the liquid free surface is considered here. Initially the liquid is at rest
and occupies the lower half-space, z < 0, and the rigid body touches the liquid free
surface, z = 0, at a single point. This point is taken as the origin of the Cartesian
coordinate system Oxyz. At some instant of time, taken as initial (t = 0), the body
starts to penetrate the liquid vertically with the body velocity U(t) being prescribed.
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The position of the entering body at any time instant ¢ is given by the equation
z = f(x,y)— h(t), where the function f(x, y) describes the body shape, f(0,0) = 0 and
[Vf] < 1 close to the impact point, and h(t) is the penetration depth of the body,
h(0) = 0 and h, = U(t). External mass forces and surface tension are neglected. The
liquid is assumed to be ideal and incompressible, and its flow three-dimensional and
irrotational.

The domain occupied by the liquid changes in time. At any instant ¢ > 0O the
liquid boundary consists of the free surface and the wetted part of the entering body,
which are separated by the contact line. The contact region starts to grow from a
single point, implying that the topology of the liquid boundary changes at the impact
instant, t = 0.

The main objectives of the water impact problem are to determine the liquid
flow, the pressure distribution and the geometry of the flow region; the shape of
the entering body and the law of the body motion are given. The problem is very
complicated since the flow domain and the division of its boundary into the free
surface and contact region components are unknown in advance and have to be
determined together with the fluid flow and the pressure distribution.

1.1. Wagner approximation

The problem can be greatly simplified if we restrict ourselves to the initial stage of
the interaction only and additionally assume that the entering body is blunt. This
means that the body shape close to the initial contact point, x = 0, y = 0, has a
small deadrise angle, |[Vf(x,y)| < 1; this is the main assumption of Wagner’s theory
(Wagner 1932). During the initial stage of a blunt-body impact the dimensions of the
wetted area in the horizontal directions are much greater than the penetration depth
h(t). This implies that the wetted part of the body can be approximated at the leading
order by an equivalent flat disk. In addition, the free surface elevation is of the same
order as h(t), which makes it possible to linearize the boundary conditions and to
impose them on the initially undisturbed liquid level at the leading order as t — O.
This procedure assumes, in particular, that the free surface position can be projected
one-to-one onto the plane z = 0 and be described for small times by the equation

z =n(x,y,1). (1.1)

It is well-known that for blunt-body impact this statement is not correct due to
the spray jet that forms at the periphery of the contact region. On the other hand,
it is also known that the thickness of the spray jet is small and the jetting makes
a negligible contribution to the flow pattern, but the jet energy has to be taken
into account in the analysis of energy redistribution during the water impact (see
Korobkin 1994). Therefore, at the leading order as t — 0 the spray jet can be ignored
in the analysis of both the free surface elevation and the fluid flow outside a small
vicinity of the jet root region. Within the Wagner theory the contact line plays the
most important role; this needs to be clarified. Its definition follows from equation
(1.1), which is valid outside the jet root region. For blunt bodies the dimension of
this region during the initial stage is much smaller than the dimension of the contact
area. Moreover, the elevation of this region above the plane z = 0 is of the order of
the penetration depth h(t), which is also much smaller than the horizontal dimension
of the contact region. This implies that the position of the moving jet root region is
close to the corresponding curve on the plane z = 0. This curve is considered as the
contact line in the Wagner approach and is denoted I'(¢). The notation used in the
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FIGURE 1. Sketches of three-dimensional flow pattern for normal penetration of a blunt body into
a liquid within the original problem and within the Wagner approximation: Z(t), contact region;
F L (t), liquid free surface; I' (t), contact line. In the physical domain the spray jet and the dry part
of the body are not shown.

following developments concerning the different parts of the flow boundaries, is given
in figure 1.

Wagner (1932) observed that the vertical distance between the liquid free surface,
n(x, y,t), and the surface of the moving body, f(x, y) — h(t), inside the jet root region,
(x,y) € I'(t), is of the same order as the thickness of the spray jet and tends to zero
as t — 0. At the leading order he arrived at the equation

W(Xa y’t) = f(xa y) - h(t)a (X, y) € F(t)a (12)

which is now referred to as the Wagner condition. Within the Wagner theory the
closed curve I'(t) divides the liquid boundary, z = 0, into two parts; the outer and
inner parts correspond to the free surface & & (t) and contact region Z(t), respectively.

Within the Wagner theory the boundary conditions are linearized and imposed on
the undisturbed liquid surface z = 0, and the liquid motion is irrotational and is
described by the velocity potential ¢(x, y,z,t). The potential ¢(x, y, z,t) is a harmonic
function in the lower half-space, z < 0, is identically zero for t < 0 and satisfies
mixed boundary conditions on the plane z = 0. It satisfies the linearized free surface
conditions. On the free surface of the liquid, z = 0 and (x, y) € # ¥(t), the dynamic
and kinematic conditions are ¢ = 0 and 1, = ¢, respectively. In the contact region,
z = 0 and (x,y) € 2(t), the linearized boundary condition is ¢, = —U(t). The
position of the contact region Z(t) is determined with the help of the Wagner
condition (1.2) provided that the functions f(x,y) and h(t) are given. In order to
close this elliptic boundary value problem, the far-field condition implying that the
velocity potential vanishes as x*> + y*> + z2 — oo is used. It should be noted that
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(i) the velocity potential is continuous through the contact line I'(t) and (ii) the
formulated Wagner problem is nonlinear even though both the equations of liquid
motion and the boundary conditions are linear. Nonlinearity of the problem comes
from equation (1.2).

In order to obtain in practice a solution of the Wagner problem in a time interval
[0,t,], one usually assumes that the contact lines I' (), where t € [0,t;], are known.
Then the velocity potentials ¢(x,y,z,7) can be calculated as the solutions of the
mixed boundary value problem for the Laplace equation in the lower half-space,
z < 0, with t now being a parameter. As a result, the vertical velocities ¢.(x,y,0,7)
of the free surface are calculated. The time integration of the linearized kinematic
condition #.(x,y,7) = ¢.(x,y,0,7), where (x,y) € FF(1), from 0 to ¢ provides the
elevation which is finally introduced into the Wagner condition (1.2). In order to
satisfy equality (1.2), it is clear that the lines I (7), where t € [0, t], cannot be arbitrary
and have to be determined together with the liquid flow. We expect that the contact
line I'(t) can be determined uniquely for smooth blunt bodies but this has not yet
been proved. Mathematical analysis of the well-posedness of the Wagner problem
is urgently required. The regularity properties of the solutions must be taken into
account for developing accurate numerical algorithms.

1.2. Early research work

The Wagner problem is usually solved numerically by a time-marching scheme it-
erating at each given instant (see, for example, Donguy, Peseux & Fontaine 2000).
For three-dimensional configurations this algorithm rapidly becomes time consuming
since one has to iterate over a continuous curve in the plane z = 0. The results
may be expected to be either very expensive or of poor accuracy. The most CPU
time demanding task is the velocity potential solution for a given but, in general,
complicated contact line I’ (¢).

Different approaches have been proposed to solve the three-dimensional impact
problem with a Wagner formulation. One of them is formulated in terms of a
variational inequality (Korobkin 1982). This approach has been formulated for three-
dimensional configurations and provides an easily implemented algorithm for carrying
out numerical calculations. It has the added bonus of providing a framework for
discussion of the existence, uniqueness and regularity properties of the weak solution
of the model. A minimization algorithm for numerical solution of the variational
inequality was used by Howison, Ockendon & Wilson (1991) in the case of two-
dimensional wedge impact. Good agreement with the exact analytical solution was
reported even with rough finite-element discretization. The three-dimensional entry
problem was treated with the help of this approach by Takagi (1997). The particular
problem of a cone entry was solved, and good agreement with the available analytical
solution reported. The approach was extended by Takagi (1997) to account for the
air cushion effect. Several three-dimensional shapes were tested. Difficulties with
evaluation of the total hydrodynamic force on the entering body within this approach
were recognized and reported. These difficulties were successfully resolved recently by
Donguy et al. (2000).

Other approaches introduced by Meyerhoff (1970) and Watanabe (1986a, b, 1987)
are described in §3. In the case of elongated bodies such as a long ship, strip theory,
which is very popular in ship hydrodynamics, can be used to obtain an approximate
solution of the three-dimensional impact problem. Within strip theory the three-
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dimensional process is approximated by a sequence of two-dimensional impacts of
each body cross-section.

1.3. Inverse method in the Wagner problem

In order to estimate the accuracy of different approximate approaches and also to
supply exact solutions of the Wagner problem, the inverse method is used in the
present analysis. In this method the position of the contact line I'(¢) is assumed
known at any time instant and the Wagner condition (1.2) is considered as the
formula for the entering body shape. It is worth noting that the symmetric plane
problem of blunt-body impact was originally solved by using the inverse method
(Wagner 1932). In fact, in the plane case the vertical velocity of the free surface is
given in analytical form but the free surface elevation is not. Wagner assumed that
the penetration depth & is a polynomial of the contact region dimension. Coefficients
of this polynomial are unknown in advance and are calculated from equation (1.2).
This method leads to exact solutions provided that the body shape is also described
by a polynomial. The same idea has been used by Schmieden (1953) to solve the
axisymmetric impact problem. Borodich (1988) used this method for three-dimensional
and self-similar impact configurations, and considered elliptic contact lines as an
example. In this case the distribution of the vertical velocity on the free surface is
given analytically as in both the plane and axisymmetric problems. However the final
results are still complicated and are not easy to analyse. Unfortunately, no calculations
were performed and, in particular, it was impossible to confirm the previous results
by Korobkin (1985) who supposed that an elliptic paraboloid provides an elliptic
contact region (see also Korobkin & Puchnachov 1988). This is demonstrated in the
present paper starting from the pioneering work of Borodich (1988). Toyama (1996)
also proposed quasi-exact solutions of the direct Wagner problem for an impacting
ellipsoid.

To our knowledge, all three-dimensional solutions of the Wagner problem provided
so far are approximate, even for the simplest case of an elliptic contact region. In
the present paper exact solutions for an elliptic paraboloid and a cone are presented
for the first time. Approximate solutions published before are tested against these
exact solutions. The way to produce more exact solutions is described. The solutions
obtained make it possible to analyse the influence of the three-dimensional effects
on the liquid flows and loads caused by impact. The results presented are of interest
not only for a ship-building audience but also for specialists from many other fields
(material science, energetics, agriculture and so on), who deal with three-dimensional
liquid/solid impact problems in different configurations like rigid body impact onto
a liquid free surface, liquid drop impact onto a rigid surface and jet impact.

The formulation of the most general inverse Wagner problem is presented in § 2.
Section 3 describes the method of solution of the inverse problem. Special attention is
paid to the numerical algorithms to solve the mixed boundary-value problem for the
Laplace equation. The inverse method generalizes the method introduced by Wagner
(1932) to solve the plane impact problem. Applications to elliptic contact region are
studied in §4. The impact problem for elliptic regions both homothetically and non-
homothetically expanding in time is considered in § 5. Exact analytical solutions of the
Wagner problem and their application are studied in § 6. The applicability of the strip
theory is analysed, in particular with the help of the exact solution obtained for the
elliptic paraboloid entry problem. Finally in § 7 the results obtained are summarized
and some directions of further research in the field of three-dimensional Wagner
problem are outlined.
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FIGURE 2. Three successive steps of the free surface elevation at location (x, y) during slamming up
to time instant of contact t.(x, y): (a) initial time, (b) intermediate time instant and (c¢) instant of
the contact.

2. Formulation of the inverse problem

Within the Wagner theory, the linearized dynamic condition imposes that fluid
particles of the free surface can move only vertically. Such a particle which is initially
at location (x, y,0) reaches the entering body surface at a time instant denoted by
t.(x,y); it is clear that ¢.(0,0) = 0. A simplified two-dimensional illustration of the
entry process with the definition of the function t.(x, y) is given in figure 2, where
three successive steps of the process are drawn. If the function t.(x, y) is known in
advance, the contact line I'(¢) is defined by the equation (Howison et al. 1991)

t=t(x,y), (2.1)

and the contact region is 2(t) = {x, y|t.(x,y) < t}. Equation (2.1) determines a three-
dimensional surface in the space with coordinates x,y and ¢, a cross-section t = t of
which provides the contact line I'(t) at the time instant 7. The elevation of the fluid
particle with initial coordinates (x, y,0) at the time instant t.(x, y) above the initial
water level can be found either from the linearized kinematic boundary condition

te(x,y)
txrtey) = [ guer0nde 22)
0
or from the Wagner equation (1.2)

7’](X, Y, IC(X, y)) = f(xa J;) - h(tc(xa y)) (23)

The vertical velocity ¢.(x,y,0,7) in (2.2) follows from the solution of the boundary
value problem for the velocity potential ¢(x, y, z, 1)

Ap =0 z <0,
¢ =0 on F (1),
$. = U on () @4
¢ —0 (x* +y*+2%) > .
Combining equations (2.2) and (2.3) we arrive at Wagner’s equation
te(x.y)
fey) = hete+ [ duxn 00 25)
0

Within the classical Wagner problem the body shape function f(x,y) and the body
velocity U(t) are given and one needs to determine both the velocity potential
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FiGure 3. Illustration of (a) the direct and (b) the inverse problems; the dotted lines denote the
surfaces which have to be determined; the outer and inner surfaces contain all the curves I' () and
y(t), respectively.

¢(x,v,2,7), 0 < 1 < t.(x,y), and the function t.(x, y) which satisfy equations (2.4) and
(2.5). This problem is referred to as the direct problem. It is a very complicated one
and the difficulties were emphasized in the introduction.

The inverse problem offers an attractive alternative to solve equation (2.5). In this
problem the body velocity and the contact region shape are prescribed at any instant
and it is necessary to determine the liquid flow and to reconstruct the entering body
shape. This implies that the functions U(t) and t.(x, y) are given and equation (2.5)
yields the explicit expression for the shape function f(x,y) provided the mixed
boundary-value problem (2.4) has been solved.

In order to illustrate the difference between the direct and inverse Wagner problems,
we consider the intersection line y(t) between the surface of the moving body z =
f(x,y) — h(t) and the initial liquid level z = 0. The intersection line is described by
the equation f(x,y) = h(t). It is convenient to introduce the new function t;(x, y) such
that h(ti(x,y)) = f(x,y) and t;(0,0) = 0. Equation t;(x,y) =t determines the three-
dimensional surface in the space with coordinates x,y and t, a cross-section t = 1
of which provides the intersection line y(t) at the time instant 7. It is clear that the
surface t = t;(x, y) is located inside the surface t = t.(x, y), which is due to the piled-up
effect (figure 3). Within the direct problem the surface t = t;(x, y) is given and one
has to determine the surface t = t.(x, y), cross-sections of which provide the contact
lines. Within the inverse problem the surface t = .(x, y) is prescribed and one has to
reconstruct the surface t = t;(x, y). Once the function t;(x, y) has been obtained, the
body shape function is given as f(x, y) = h(t;(x, y)) provided the penetration depth h
is prescribed at any time instant.

It should be noted that the formulation of the inverse Wagner problem described
above is possible because the liquid flow depends on the contact region shape Z(t)
and the body velocity U(t) (see equations (2.4)) but not on the body shape. The
inverse problem of impact is linear and, even in the most complicated cases, can be
reduced to an integral equation with respect to the velocity potential ¢(x,y,0,7) on
the disk Z(7) and quadratures. It was proved by Zaremba (1910) that in the case of
a continuously differentiable boundary of the region %(r) the solution of the mixed
boundary-value problem (2.4) exists, is unique and continuous up to the boundary
z = 0. Therefore, the solution of the inverse Wagner problem exists and is unique for
smooth contact lines I' (7).

A common difficulty of both the inverse and direct problems is connected with
calculation of the vertical velocity on the free surface ¢.(x,y,0,7) which appears
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in the integrand of equation (2.5). An advantage of the inverse problem is that the
corresponding velocity potential has now to be calculated for a flow around a flat
disk bounded by a known curve I'(t). This can be done either numerically in the
general case or analytically for simple curves I' (7). The former case is not considered
here but a general method of solution is outlined in the next section. The latter case
offers a wide range of exact solutions, which are detailed in §§4 and 5.

3. Method of solution

For a given curve I' () bounding the wetted area Z(t), the inverse problem requires
the calculation of the vertical velocity on the free surface. It is then introduced into
the integrand of equation (2.5). The vertical velocity of the liquid free surface can
be obtained from the representation of the velocity potential in the lower half-space,

z <0,
oz $(&,n,0,7)dldn
oz == [| oGt G0
in the form
1 $(E.n.0.7) dédy
bt == [ TS 62

where (x,y) € # %(1). It was taken into account in (3.1) that ¢(x,y,0,7) = 0 outside
the contact region Z(t). Once the contact region %(t) and the potential distribution
¢(x,y,0,7) on it are known, formula (3.2) can be substituted into Wagner’s condition
(2.5) to provide the corresponding shape of the entering body. Special care has to be
taken over the integration in (2.5) as the integration variable t approaches the upper
limit ¢.(x, y), which is due to the singularity of the vertical velocity ¢ .(x, y,0,7) at the
contact line I' (1) (see Howison et al. 1991).

In order to calculate the potential ¢(x,y,0,7) on the contact region %(t), we
differentiate (3.1) with respect to z and consider the limit of the result as z — —O.
Taking the boundary condition on the wetted part of the body surface into account,
one obtains the integral equation

¢(&,n,0,7)dCdy

_U(T) 27‘5 P _0 822 / () \/(X — 5)2 T (y —1’])2 +Z2,

(3.3)

which has to be satisfied at any point (x, y) from 2(z). The solution of equation (3.3)
also has to satisfy the boundary condition: ¢(x,y,0,7) = 0 on the boundary 0%(t) of
the region Z(t). In order to understand the necessity of the boundary condition for
equation (3.3), we use the well-known formula

L 1
02 \Vx =8P+ —n? +22

= —4nd(x — &)d(y —n)d(z) —

(3.4)

A 1
Ve +—nr+z2)

where §(x) is the Dirac delta function and A, = 0%/0x>+02/0)” is the two-dimensional
Laplace operator. Substituting this formula into (3.3) and letting z — —0, we obtain
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the equation

=2nU(1), (x,y) € Y(7), (3.5)

/ $(&,n,0,7)dédy
a0V (x = &2+ (y —n)?

which is reminiscent of Poisson’s equation. Solution of equation (3.5) with the bound-
ary condition ¢ = 0 on 0%(t) can be obtained in the same way as that of (3.3).

The integral equation (3.3) was solved by Meyerhoff (1970) in the case of rectangular
region & with the help of a double series similar to that used in lifting-surface theory.
Basic functions which are combinations of the Chebyshev polynomial of the second
kind, were adapted from those used by Glauert (1983) in the two-dimensional wing
problem. Agreement of the numerical results for rigid plates with experimental data
by Pabst (1930) is fairly good.

The three-dimensional problem of an elastic rectangular plate impact onto the
liquid surface was analysed by Korobkin (1996). The problem requires the solution
of equation (3.5), where the right-hand side is now a function of x, y, and t and
represents the local velocity of the elastic plate.

Equation (3.3) was rewritten by Watanabe (1986a, b, 1987) in the form

_ ¢(£: 7’70’ T) - ¢(X>y70: T)
2nU() = / o (=82 4 (y — 2 9E
dedn

0,7)li 3.6
oty ’T)z‘i%/[w((x—é)2+(y—n>2+z2>3/2’ 30

and solved numerically by a method similar to that of Meyerhoff (1970) but with
different basic functions. Numerical calculations were performed for real ship hulls
and the results obtained were compared with experiments.

The integral equation (3.3) was used by Takagi (1997) for the displacement potential,
which is the integral in time of the velocity potential. An advantage of working with
the displacement potential instead of the velocity potential is that the gradient of the
displacement potential is zero together with the potential itself along the contact line
I'(t)=0%2(7).

After some manipulations accounting for the boundary condition ¢ = 0 on 0%(r)
equation (3.3) can be transformed to

%u—éﬁ+@—ny o
// ) 55(6’ T (x— &)y —n) dédn = —2nU(z), (3.7)

which is the well-known integral equation of wing theory (see, for example, Bis-
plinghoff, Ashley & Halfman 1996), or

1 x—¢ B
//)admeﬂ( 2lLF¢@—5V+U—nV dédn =2rU(z),  (3.8)

which was accurately solved by Tuck (1993). Equation (3.8) was solved for a rectan-
gular region & of arbitrary aspect ratio with up to seven-digit accuracy. An explicit
solution of equation (3.8) has been obtained for an elliptic region & by Hauptmann
& Miloh (1986).

A finite element method was used by Donguy et al. (2000) to solve the three-
dimensional impact problem with respect to the displacement potential. Calculations
were performed for an axisymmetric cone.

We may conclude that the velocity potential distribution on the wetted area %(r)
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can be obtained numerically by solving one of the integral equations (3.3)—(3.8) which
are similar to those well-known in wing theory. The solutions of these equations were
obtained mainly for rectangular regions. Once the velocity potential is known, the
vertical velocity on the free surface can be evaluated from equation (3.2). In order to
perform accurate calculations, the velocity potential on the wetted area 2(t) has to
be evaluated with good accuracy. This is still not a simple task even if the numerical
methods described in this section provide the global characteristics such as added
mass with very good precision. Moreover, the boundary conditions in the impact
problem and those in the lifting surface problem are not identical. In particular,
the latter includes the Kutta conditions which are not considered in the problem of
blunt-body impact. This means that the methods developed in wing theory must be
used for the impact problem with special care. Accurate evaluation of the velocity
potential on the contact region Z(t) of an arbitrary shape is a subject of our further
research.

There is a way to derive exact solutions of the inverse Wagner problem, thus
providing preliminary qualitative results. These solutions are also helpful to test
numerical solutions obtained for both the direct and inverse impact problem. Exact
solutions can be obtained, in particular, for elliptic contact regions. For various
applications of industrial interest the elliptic contact regions are general enough to
cover a wide range of physical configurations. Korobkin (1985) found that the leading
term in the asymptotic solution of the smooth- and blunt-body entry problem as t — 0
is the same as if the entering body were an elliptic paraboloid. In addition the study
of elliptic shapes also takes into account all kinds of axisymmetric bodies. The impact
problem for elliptic disks has already been studied in previous works by Borodich
(1988), Toyama (1996) and Wood (1997) among others.

In the following developments the elliptical case is fully analysed. The potential
flow around an elliptic disk is given analytically as a degenerate case of the three-
dimensional ellipsoid. We prescribe the two semi-axes of the contact line I'(¢) as
functions of time. This leads to the following alternative: these two semi-axes evolve
dependently or not, in other words, the contact region grows homothetically or not.
The latter problem can only be handled numerically but with a prescribed accuracy.
The former case yields, among others, self-similar solutions. Exact solutions are
presented when the two semi-axes of the elliptic region grow either as square root of
time or linearly with time.

4. Impact problem for elliptic contact region

In this section the Wagner problem (2.4) and (2.5) is considered for elliptic contact
region %(t). The position of the contact line I'(¢) at an instant t is described by the
equation

2 )2

20 + ) 1, (4.1)
where the semi-axes a(t) and b(t) are given within the inverse impact problem and are
the principal unknowns within the direct problem of impact (figure 4). The semi-axes
are such that b(t) = a(t) and a(0) = b(0) = 0. According to the main assumption of
the Wagner theory the inequalities a(t) > h(t) and b(t) > h(t) have to be satisfied
during the stage under consideration, 0 < t < t;. The impact problem with an elliptic
contact region is a natural generalization of the axisymmetric impact problem, where
a(t) = b(t). It is convenient to introduce the aspect-ratio factor k(t) = a(t)/b(t) and the
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FIGURE 4. Elliptic contact region Z(t) with the semi-axes a(t) and b(t) in the x- and y-directions,
respectively. The angle « is measured from the positive x-axis.

ellipse eccentricity e(t) = y/1 — k2(¢). In the axisymmetric case k(t) = 1 and e(t) = 0.
We say that the contact region expands homothetically if the aspect-ratio factor k is
independent of time.

In the elliptic case the mixed boundary-value problem (2.4) was reduced by Leonov
(1940) to equation (3.5). It was observed that the left-hand side of this equation does
not depend on the spatial variables x and y if the following form of the solution is
chosen:

a’(t)  b(1)’

The function S(¢) is determined by substitution of (4.2) into equation (3.5). In order
to evaluate the integral in (3.5), ellipsoidal coordinates (Appell 1932) have been used.
Solution (4.2) satisfies the boundary condition ¢ = 0 on I'(t). Leonov’s solution was
used by Borodich (1988) to obtain the vertical velocity of the free surface outside the
elliptic disk and to derive equation (2.5) in the homothetical case.

The impact of an elliptic plate on a water surface was studied by Wood (1997)
within the pressure-impulse theory. The pressure impulse on the plate was found
in the form (4.2). Numerical calculations were performed for the pressure-impulse
distribution throughout the liquid volume.

The easiest way to present the solution of the mixed boundary-value problem (2.4)
in the elliptic case is to treat it as the limiting case of a vertically moving ellipsoid
in an unbounded fluid. The time ¢ is the parameter in (2.4), which is why we do not
mention the dependence of the solution on time in treatment of (2.4). The solution
of the impact problem for the elliptic disk is briefly derived below.

A rigid ellipsoid bounded by the surface

d(x,,0,1) = S(t)\/l X (4.2)

X2 y2 22

Stpta=l (4.3)

is considered. The elliptic disk (4.1) is the limit of this surface as ¢ — 0. Therefore, in
our case b = a > c. The ellipsoidal coordinates A, u and v are introduced as roots of
the cubic equation

X2 y2 22

210 Pro a0
with respect to 0, where —b> < v < —a? < u < —c* < . Surface (4.3) is described in
the new coordinates by the equation A = 0, which is easy to understand from equation
(4.4). In the region outside the ellipsoid, we have 4 > 0. The velocity potential ¢(x, y, z)

1 (4.4)
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of the unbounded liquid flow due to motion of the ellipsoid vertically downward with
velocity U is given as (see Milne-Thomson 1960)

o(x,y,z) = CZ/ d¢ s (4.5)
P @@+ OB+
where 4 = A(x, y,z) and, in particular,
B (2 4+ A)(c2 4+ u) (2 +v)
= \/ (a2 — 2)(b2 — ¢2) : (4.6)
The constant C in (4.5) is determined from the boundary condition
% =—Ucosf, (L=0) 4.7

on

on the surface (4.3), where 6, is the angle between the normal to the surface of
ellipsoid (4.3) and the z-axis. The limit of the potential ¢(x,y,z) as ¢ — 0 provides
the solution of the boundary-value problem (2.4). The limit analysis has to be carried
out carefully because some difficulties occur when both ¢ and 4 tend to zero in (4.5).
Details of the limit analysis are given in Appendix A. As a result, the solution of the
boundary-value problem (2.4) is obtained in the form

Ud’bz [~ dé
2E(€) AMx,p,2) 53/2g(é),

where g(&) = \/(a? + &)(b2 + &), E(e) = E(n/2,e) and A(x, y, z) is the positive solution
of equation (4.4) for ¢ = 0. The standard elliptic function E(N,e) is defined as

N
E(N,e) = / V1 —e?sin*0d6. (4.9)
0

It should be noted that the elliptic disk (4.1) corresponds to A(x, y,0) = 0. The integral
in (4.8) is singular as 4 — 0. In order to obtain the velocity potential on the disk, we
integrate by parts in equation (4.8) and consider the limit as 4 — 40 and z — —O.
The result is

d(x,y,2) = (4.8)

2 2
Ua Jy_x _ ¥ (4.10)

¢(X, Vs 0) - E(e) (12 bz
on the elliptic disk, where x?/a®>+y?/b*> < 1 (Scolan 1999). This exact result was com-
pared to the approximate one by Toyama (1996), which is presented as a polynomial
of fourth order with respect to the aspect-ratio factor k. The maximum relative error
was found to be about 0.25% at k ~ 0.714.

In the axisymmetric case, k = 1, e = 0 and E(0) = =n/2, the velocity potential
(4.10) on the circular disk is ¢(x,y,0) = —(2/n)U+/a® —r2, where > = x> + y?, and
coincides with that by Schmieden (1953). In the plane case, where b/a — o0,e — 1
and y = 0(1), equation (4.10) provides ¢(x, y,0) = —U+/a?> — x?, which coincides with
the result by Wagner (1932).

In the blunt-body impact problem the pressure in the liquid is given by the linearized
Bernoulli equation p(x,y,z,t) = —p¢ (X, y, z,t). The hydrodynamic force F(¢) on the
entering body follows from the pressure integration over the wetted area %(t):

Flt) = —p // % (¢, 1,0,00dxdy = —p& // b6 1,0,0dxdy.  (411)
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Substituting (4.10) into the last integral and evaluating it, one finds

d
F(t) = E[Ma(t)U(t)]a (4.12)
where M,(t) is the added mass of the elliptic disk (4.1):
_ 2mpa’b
M,(t) = 3 E@) (4.13)

It is seen that M,(0) = 0 and M, = %pa3 in the axisymmetric case (Lamb 1932),
where a = b.
The kinetic energy T(t) of the liquid flow generated by the impact,

T(t) = 1p / L A 000 00 dedy = MOV (414)

and the work A(t) done to oppose the hydrodynamic force on the entering blunt body,
t

A(t) = / F(t)U(7)dr, (4.15)
0

in general are not equal to each other. In the case of constant entry velocity equations
(4.14) and (4.15) give T(t) = $M,(1)U? and A(t) = M,(t)U?, respectively. This implies
that the energy conservation law is not satisfied within the Wagner theory. In the
general case,

d dM,

dt dr’

where dM,/dt > 0 during the initial stage. It is seen, in particular, that T(t) < A(t),
which means that the energy is partly ‘lost’ during the impact.

This fact is well-known for both plane and axisymmetric cases (Korobkin 1994 and
Molin, Cointe & Fontaine 1996). We know that the energy is partly transmitted to
the main liquid body and partly to the spray jet. The latter part of the energy can be
calculated by evaluating the jet velocity and its thickness. The flow in the jet root can
be approximately considered as two-dimensional because the variation of the flow
in the normal direction to the smooth contact line I'(t) is greater during the initial
stage than that in the tangential direction. This means that the Wagner solution for
the two-dimensional jet root region can be used to obtain parameters of the three-
dimensional jet sheet formed at the periphery of the contact region. In order to obtain
the uniformly valid solution, we need to isolate an elementary slice defined in the
normal direction of I' () and to match there the three-dimensional outer solution (4.8)
with the two-dimensional jet solution by Wagner (1932). The jet solution provides, in
particular, that the maximum pressure P, (o, t) in each elementary slice occurs in a
close vicinity of the contact line and is equal to % pV2(a,t), where V,(x, t) is the normal
component of the velocity of the expanding contact line. For an elliptic contact line
(4.1), we obtain

[A(t) — T(1)] = 1U? (4.16)

a,cos® o + kb, sin’ o

J1—esinfa

where x = a(t)coso and y = b(t)sina, 0 < o < 27, along the line.
The total jet energy follows from the summation of the elementary contributions

of each slice all over the contact line I' (¢). This calculation seems only to be possible

numerically for the most general case. However, one may expect that the result will

V(o t) = (4.17)
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not be different from the two-dimensional one which stipulates that the kinetic energy
is transferred equally to the jet and to the bulk of the fluid. In the three-dimensional
case this proportion has to be checked numerically.

It should be noted that the evolution of the jet sheet is different from that of the
two-dimensional jet and requires a special analysis. The evolution of the spray sheet
in the axisymmetric case was studied by Korobkin (1997).

The vertical velocity ¢ .(x, y,z) of the liquid particles on the free surface, z = 0 and
x?/a*> + y?/b* > 1, follows from (4.8):

0 U ) b b*( + a?)
— 0)=——— |E — 4.18
et == B (wesn ) - S | @19
where 4 = A(x, y,t) is the positive root of equation (4.4) for z = 0:
L= 3%+ 9> — @ — b* + \/(eb)* + 2(eb)*(x* — y2) + (x* + y2)7]. (4.19)
Far from the contact region, r — o0, z = 0, where r = \/x2 + y2, we obtain
¢ U a’*b 1 s
A 2240 4.20
az ~E@ 3 O (420

which is in agreement with the results by Schmieden (1953) in the axisymmetric case,
a = b. We may conclude that far from the contact region the elevation of the free
surface is approximately the same as in the axisymmetric problem with equivalent
radius a,, of the contact region being (na’h/2E(e))'/3.

Formulae (4.18) and (4.19) make it possible to obtain the free surface elevation in
quadratures by integrating (4.18) with respect to time for given functions a(t), b(t)
and U(t). Asymptotic formula (4.20) can be used instead of (4.18) to evaluate the
vertical velocity far from the impact region.

5. Inverse Wagner problem for elliptic contact region

Within the inverse problem of impact we assume that the functions a(t), b(t) and
U(t) are prescribed for O < t < t;. The functions are not arbitrary. They satisfy the
following conditions: (i) a(t), b(t) and U(t) belong to C'(0,t), (ii) a(0) = 0,h(0) = 0,
(iii) a(t) and b(t) monotonically increase in the time interval [0, ], (iv) b(t) = a(t), (v)
U(t) > 0, (vi) da/dt > U(t) and db/dt > U(t).

5.1. General case of impact problem
Taking into account the equality

h(t) = /0 z U(r)dr, (5.1)

formula (2.5) for the entering body shape can be rewritten as

te(x,y)
fxy) = /0 [U() + . (x,1.0,7)] d, (5.2)

where the function t.(x,y) is defined by equation (4.1) resolved with respect to t. In
the polar coordinates r,«, where x = rcosa and y = rsina, equation (4.1) takes the

form
2

o [cos?a | sin“a]
droas ol e
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FIGURE 5. Time variation of the semi-axes a(t) and b(t), and penetration depth h(¢). The velocity is
U(t) = Gt, the semi-axes are a(t) = v,t + y.t> and b(t) = x; sin w,t. The numerical parameters are
G=1ms2 v, =1ms', y,=25ms™2 x, = 0.5m and w, = 7n/2s~!. The simulation is performed
until ¢t; = 0.1s.

and defines the function t.(r,«). The properties (i)—(v) of the functions a(t) and b(t)
make it possible to prove that dt.(r,«)/0r > 0, which implies that the inverse function
r = r(a,t.) such that t.[r(o,t),] =t can be introduced.

It is convenient to consider the main equation (5.2) in the parametric form. With
the angular coordinate o« and the upper limit ¢, in (5.2) as parameters, 0 < o < 27,
0 < t. < ty, equations (5.2), (5.3), (4.19) and (4.18) yield

r = alt.) (5.4)

V1 —é(t,)sin’ o

" 1 [E€+ k(1) . 1
f(r,o) —/0 U(7) <1 + E(e(?)) ZE+ 1) —E (arcsm m,e(r))]) dz, (5.5)

where ¢ = A(r cos o, rsina, 7)/b*(1),

E(r,o,1) = ! r — k(1) —1+ - + 2¢%(7) r2 cos 2o + e*(t) (5.6)
T2\ b(a) b4 (1) b2(1) ' ‘

The integrand in (5.5) vanishes as t — 0, which follows from (4.20), and is singular at

T =t., where &(r,a,t.) = 0. The singularity is integrable, which shows that numerical

calculations of the body shape function f(r, «) can be performed with a given accuracy.
Numerical calculations were carried out with variables introduced as follows:

U(t) = Gt, alt) = vat + 74t>,  b(t) = x, sin wyt, (5.7)

where G and y, have the same dimension as an acceleration, v, is a velocity, x; is a
length and w,, is a frequency. It should be noted that these developments are only used
for small time ¢, when a,(t) > U(t) and b,(t) > U(t), in accordance with Wagner’s
assumptions. We choose 0 < t < t1, where t; = 0.1s. As an example, the calculations
are performed for the case

G=1ms? (5.8)

v, =1ms™, x,=0.5m,
Y. =25ms2, w,=Tn/2s7",

The time variation of the semi-axes a(t) and b(t) and the penetration depth h(t)
are shown in figure 5. Note that, according to the assumptions (i)—(vi) made at the
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X (m)

FIGURE 6. The contact line I'(¢;) and the intersection line y(¢;) at the instant ¢, 0 < o < /2.
Same parameters as in figure 5.
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FIGURE 7. (a) Generated shape which provides the elliptic contact region with the semi-axes depicted
in figure 5. The free surface elevation around the body shape is also drawn (b). The length scales
are shown at the tip of arrows along the axes (x, y,z). Same parameters as in figure 5.

beginning of this section, the draught is always smaller that the two semi-axes. The
relative positions of the intersection line y(¢;) and the contact line I'(¢1) at the end of
the stage under consideration are shown in figure 6. Figure 7 shows perspectives of
the generated shape of the body, the wetted part under the undisturbed free surface
and the free surface elevation around the body. The corresponding distribution of
maximum pressure P, (o, t;) along the contact line, 0 < o < ©/2 is plotted in figure 8.
It is seen that the pressure peaks at « = 0, where the slope of the shape is lowest.

5.2. Axisymmetric impact problem

In the axisymmetric case the body shape function does not depend on the polar angle
o and equations (5.4) and (5.5) provide

) = /0 U |14 2 ("(T) _ arcsin “(:)ﬂ dr, r=a(t). (59

© \ VT —a(x)
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FiGUrE 8. Distribution of the maximum pressure at the instant t; along the contact line,
0 < o < /2. Same parameters as in figure 5.

This equation was derived and inverted with respect to a(t) by Schmieden
(1953).

Another way to invert this equation, to solve the direct problem in the axisymmetric
case, is based on Wagner’s method developed originally for the plane impact problem
(Wagner 1932). After some manipulations equation (5.9) can be rewritten as

2r (! ¢
r)=— G(¢ér) | arccos & + — | d¢, 5.10
7 nA()( JF?) (5.10)
where G(¢r) = U(t)/a.(t) and 7 is defined by the equation a(t) = ¢r as the function
of the product &r. According to Wagner’s method, the function G(¢r) is sought in the
form

G(&r) = Gu(&r), (5.11)
n=0
which gives
» 1
f(r)= 3:;::0 G /O g <arccos&f + \/16_7> dé. (5.12)

This equation determines the coefficients G, for a polynomial shape function f(r).
Taking into account the definition of the function G(¢r), we find G(a(t)) = U(t)/a,(t),
which leads to the following equation:

0

> %a”“(t) = h(1) (5.13)

n=0

with respect to the radius a(t) of the contact region. This equation can be solved
either numerically or analytically for simple shape functions.

5.3. Design of three-dimensional bodies entering water

The semi-axes of the contact region a(t) and b(t) can be defined implicitly with the
help of additional constraints, which can be viewed as the design problem (Scolan
& Korobkin 2000). The design problem includes the solution of the inverse Wagner
problem but can be much more complicated if the constraints are complex. We
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consider the free fall of a blunt body onto an initially calm liquid free surface. The
mass of the body M is given and the hydrodynamic force on the body F(t) = F.[(t/T),
is prescribed for t being small enough. The contact region () is assumed to be elliptic.
We shall reconstruct the body shape, the entry of which provides the given resistance
force. Here F. is the constant, T is the time scale and B(7) is a non-dimensional
function, 7 = t/T. The entering body shape has to be determined for given function
B(7) and given constants Uy, F., T and e, where U, is the impact velocity. Two cases
are considered: (i) f(f) = 1 and (ii) B(i) = Texp(—i). The first is for the shape of a
free falling body, for which the entry velocity reduces in an optimal way without high
acceleration. The second case roughly imitates a typical history of the impact force.
The vertical velocity of the body U(¢) is governed by Newton’s second law

MU, =Mg—F(t), t>0, and U(0)= U, (5.14)

where g is the acceleration due to gravity and F(¢) is the hydrodynamic force acting
on the entering body. Equations (5.14) and (4.12) give the body velocity as
MUy + gt)
M + M,(t) "
Substitution of (5.15) into (4.12) yields the equation

d | MM,(1)(Uo + gt)

FB/T) = o TSR] } (5.16)

U(t) = (5.15)

integration of which in time provides the added mass M,(t):

MF.TB(t/T)

M) = 310+ 40— FTBE/T) B(%):/O B(7) dr. (5.17)

Combining this equation with (4.13), we obtain the semi-axes a(t) and b(t) provided
that the aspect-ratio factor k(¢) is specified from an additional condition. The simplest
case, where k = /1 — ¢2 is a constant, only is considered. With known semi-axes of
the contact region, the inverse Wagner problem is solved according to the procedure
described above.

In the first case the body acceleration is constant, U(t) = Uy(l — cot;), and the
semi-axes are

b(t) = bolt1 /(1 — cot1)]3,  a(t) = b(t)x/1 — 2, (5.18)
gt _ ko 5_ (3 El) \F
t = Uy’ co = Mg 1, by= <2n 1 —e2> s (5.19)

It is seen that b(t) = O(t'/?) as t — 0, which indicates that f(x,y) = O([x> + y?]*/?)
close to the impact point.
In the second case, f(7) = fexp (—1), the semi-axes are given by the formulae

PR 7(t1/0) }“3 _eT 3
b(t) = bod" Trr s spae| 0 0 v MO =1+ Hen(=d)
(5.20)

Now f(x,y) = O([x> + y*]*/%) close to the impact point.

Calculations were performed for the second case only with Uy = 4.43ms™!,
F. =29333N, T = 0.0113s and M = 100kg, which correspond to a falling height
of 1 m and a maximum deceleration of 10g. Two cases were considered: e = 0.1 and
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FIGURE 9. Non-dimensional velocity of the falling body U(t) after the impact instant and the

body acceleration U ,(t). The variables are made non-dimensioned with a unit velocity and gravity
g = 9.81m s72 respectively.
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FiGURE 10. Time variation of semi-axes a(t) and b(t) for e = 0.1 and e = 0.9,
and the body penetration depth h(t).

e =0.9. The time variations of the body acceleration and velocity are illustrated in
figure 9. The time growths of the semi-axes a(t) and b(t) are depicted in figure 10.
It should be noted that the penetration depth h(¢) is always smaller than the char-
acteristic lengths of the contact region, which is in accordance with the hypothesis
of linearization of Wagner’s theory. The calculated body shapes and the free surface
elevation around the bodies are plotted in figure 11. The calculated shapes can be
used in drop experiments to justify the approach presented. The method described
can be of help in designing bodies subject to water impact.

Both the axisymmetric problem and the design problem were considered for con-
stant aspect-ratio factor k, which is the case of a homothetically expanding contact
region. This case can be treated with the help of the general procedure based on
equations (5.5). However, further simplifications are available and the radial depen-
dence of the shape function f(r,«) can be better handled and even extracted if the
velocity and the semi-axes are given as power functions of time.
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FIGURE 11. Calculated body shapes and free surface elevation around the designed bodies: ec-
centricity ¢ = 0.1 in (a) and (b) and e = 0.9 in (¢) and (d). Two successive contours along the
body surface correspond to an interval of time 5 x 1073 s. (a, ¢) Perspectives of the body with the
successive contact lines on its surface; (b, d) projections on the plane x = 0 of the body shape under
the undisturbed free surface. Shapes are drawn up to time ¢t = 0.1s; in (b) and (d) the ratio of
maximum beam to penetration depth are b/d ~ 5.5 and b/d ~ 9.6 respectively.

5.4. Homothetical case

We start from equation (5.5), where the aspect-ratio factor k and the eccentricity e
are the constants now. Taking into account that &(r,o,t.) = 0 and h(0) = 0, and
integrating the right-hand side of equation (5.5) by parts, we obtain

_ itk h(r) 8¢
f(r, OC) = E(e)/o m (U(T) — ma(r, o, T)) dr. (521)

We suggest considering the quantity r in (5.21) as a function of the parameter t. and
the angular coordinate o, r = r(t., ). In the homothetical case

k
)

r(t., o) =
(te>20) 1 —e2sin’ o

b(t.), (5.22)

which follows from (5.4). Equation (5.3) gives

cos? o sinzoc] . (5.23)

+ -
k2 E+1
The function b(t) is monotonic, which makes it possible to invert (5.23) with respect
to t and consider equation (5.23) as the definition of a new function t = 1(q,r, ®),

where ¢ = 1/&. Taking g as the new integration variable, equation (5.21) can be
transformed into

1 * ot [q(1+ qk?) 1 + gk?
f(V,OC) - MA <U[T(qara OC)]% W + %h[’[(q,l", a)]m) dq

(5.24)

b(t) = P10 ) [
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In formula (5.24), the radial coordinate r can be now considered as the independent
variable, and the function t(q,r, ) is defined implicitly by the equation

2 - 2
cos? o sin cx] (525)

_|_
1+4gk?> 1+4¢

which follows from (5.23). In the most general case the integral in equation (5.24) can
only be evaluated numerically. Equation (5.24) can be additionally simplified for U(t)
and b(t) being power functions of time. This choice provides analytical solutions of
the three-dimensional Wagner problem.

We consider the inverse Wagner problem in the case

U(t) = Upt™, b(t) = bot", (5.26)

b*[e(g,r,0)] = r’q [

where Uy and by are the given constants with proper dimensions, m > —1, n > 0
and n < m + 1. The last inequality follows from the original assumption h(t) < b(t).
Substituting (5.26) into (5.25), we obtain

1/ q"*" [ cos?a  sin’a 2 597
,r,0) =1r'"R(q,a), R(q,o)= + .
o =R R = | T T (527
Accounting for equations (5.26) and (5.27) formula (5.24) gives

flroa) = r"V"C(a), (5.28)

UO 0 m CI(I + qu R'"H(q,cx) 1+ qk
Ee)/ (R (g, \/T 2(m+1) m) q. (529

Therefore, in the case of (5.26) the dependence of the shape function f(r,«) on the
radial coordinate r is simple and we need only to evaluate accurately the integral in
(5.29).

The form of the shape function (5.28) in the homothetical case with power functions
U(t) and b(t) was obtained by Borodich (1988). However, the coefficient C(x) was
presented in another, more complicated form, which forced Borodich to conclude that
there is no hope of evaluating C(«) analytically for any m and n.

6. Analytical solutions and their applications

Analytical solutions of the three-dimensional impact problem can be obtained, at
least in the following three cases: (i) m = 0 and n = %; (i) m =1 and n = 1; (iii)
m = 0 and n = 1. The first and second cases correspond to the impact problem for
an elliptic paraboloid, and the third one to the impact problem for a cone.

6.1. Entry of an elliptic paraboloid at a constant velocity

In the case m =0 and n = %, the body velocity is constant, U(t) = U, and the elliptic
contact region expands homothetically, a(t) = kb(t), with b(t) increasing as the square
root of time, b(t) = bot'/%. Equations (5.28) and (5.29) yield

f(r,o) = r2C(<x), (6.1)

" [oR q(1 + gk?) 1 + gk?
C(o) = E(e) (iaq(q,oc) “1+q + ;R(%@H) dq, (6.2)
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where
2 .2
q | cos*a sin” o
R == 6.3
(4.2 %L+%ﬁw+A, (63)
OR 1 cos? o sin’
o - . 6.4
w”ﬂ)bAa+ww+a+m4 (4
It is easy to observe that
C(a) = Agcos® o + Bysin® o, (6.9)
where
Ay = o0 /WWM+mWM+w%W@
b<2)E(€) 0
1 /™ _ _
w3 [Catar oo ad e 6o
0
3Uy ” 172 52 2101/2
= 1 1 + gk*)"*dq. 6.7
"= 2E@) J, g (14+q)""(14+gk”)'"dq (6.7)

The integrals in these equations are standard (see Gradshteyn & Ryzhik 1994), and
give the following compact formulae:

. Uy D(e) . Uo D(e)

where D(e) is the standard elliptic integral

D(e) = 4l (6.9)

n/2 de
Ko - Bl K@= [ =
0 +J1—e?sin"0
In the original Cartesian coordinates, x = rcosf, y = rsinf and z, the equation
obtained for the entering body shape function takes the form

f(x,y) = Aox* + By, (6.10)

which is the equation of an elliptic paraboloid. This result confirms the hypothesis
by Korobkin (1985) that an elliptic paraboloid entering calm water at a constant
velocity provides an elliptic contact region. The analytical solution obtained for the
inverse Wagner problem can be used to derive the solution of the corresponding
direct problem of water impact by an elliptic paraboloid.

The problem of an elliptic paraboloid entering initially calm liquid at a constant
velocity is considered. The position of the moving body at time instant ¢ is given by
the equation

x>y
where A, B and U, are given constants and B > A. Equation (6.10) shows that
within the Wagner approach the contact region %(t) of the entering body (6.11) with
the liquid is a homothetically expanding ellipse with its semi-axes being b(t) = bo\ﬁ
and a(t) = bok\/f. The constants by and k are unknown in advance and have to be
determined for given 4, B and Uy. In order to obtain the corresponding formulae,
we compare equations (6.11) and (6.10) and conclude that the aspect-ratio factor k

2

z Uot, (6.11)
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of the contact region and the constant by have to satisfy the following equalities:
Ag=A"%, By=B7, (6.12)
where the functions Ay(bo, k) and By(bg, k) are defined in equations (6.8). Taking into
account formulae (6.8) for 4y and By, we obtain the equation for k:
21 +k*D(e)/E(e) — 2
2 —k*D(e)/E(e) ”

where k, = A/B is the aspect-ratio parameter which characterizes the slenderness of
the body, and the formula for by is

(6.13)

12 »D(e) 12
by = BU, {1 +k E(e)} . (6.14)
Equations (6.13) and (6.14) together with (4.10) yield the solution of the impact
problem for the elliptic paraboloid.

In order to compare this exact solution with the approximate one by Korobkin
(1985), we consider the intersection line y(t) between the surface of the entering
body (6.11) and the initial liquid level, z = 0 (see §2). Equation (6.11) gives that
this line is the ellipse with semi-axes a,(t) = AJUTﬂ, b,(t) = B,/Upt and eccentricity
e, = /1 — A?/B2. Korobkin (1985) obtained the following explicit formulae:

1/2
; 2—et—¢
a,(t) _ e —e ’ (6.15)
a(r) 3(1 —e?)
2 —¢? 2

He worked with the displacement potential instead of the velocity potential and solved
the corresponding boundary-value problem using Lamé functions. The solution was
obtained in quadratures together with equation (6.15). However, it was not easy to
satisfy the additional condition ¢ = 0 on the contact line. This condition was satisfied
approximately and equation (6.16) was derived from the analysis of the results of
numerical calculations. The importance of the condition on the contact line has been
discussed in §3. The approximate solution by Korobkin (1985) can be improved,
which will be shown in a subsequent paper by the authors devoted to the methods
of solution of the direct three-dimensional Wagner problem. It should be noted
that the approximate formula (6.16) provides the correct solutions (see Korobkin &
Pukhnachov 1988) for the axisymmetric case, where e, — 0, and for the plane case,
where e, — 1. Equation (6.13) can be rewritten in the form

14 (1 —e*)D(e)/E(e)
2—(1—e?)D(e)/E(e)’

It can be proved that equation (6.15) is exact provided that e, is given by (6.17).
Figure 12 shows the comparison between the exact solution (6.17) and the approximate
one (6.16). The discrepancies are within 8%. It should be noted that the ratio e/e, is
less than unity, which means that the elliptic contact region 2(t) is less elongated than
the elliptic cross-sections of the entering body. This is also confirmed by the results
plotted in figure 13, where both the contact line I' (¢) and the intersection line y(t)

are shown at different time instants for a particular impact conditions Uy = I ms™,

=1—(1-¢) (6.17)
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FIGURE 12. Graph of the eccentricity e, of the intersection line y(t) as a function of the eccentricity e

of the contact line I' (¢) for elliptic paraboloid entry problem: present exact solution (6.17) is shown
with dotted line and the approximate solution (6.16) is shown with solid line.

1.2

0.9

y(m) 06

031 N VA i
VoA
0.15s: ol
\ FR
0.2s: " 0o
! A
0 0.3 0.6

0.9

X (m)

FIGURE 13. The contact lines I'(¢) (solid curves) and intersection lines y(¢) (dotted curves) at different
time instants for Uy = 1ms™!, 49 =42 =0.5m™!, By = B> = 025m™!, simulation is performed
in the time interval ¢ € [05s,0.2s].

Ay = A2 =05m!, By = B2 =025m™! and 0 < t < 0.2s. Figure 14 shows
several intersection lines, (x,y) € I'(t), z = x?/ A + y?/B? — Uyt, between the entering
elliptic paraboloid and the disturbed free surface. Note that the vertical dimension

is magnified in this figure. It is seen that these lines are not two-dimensional curves,
x?/A% + y?/B? — Uyt # Const for (x,y) € I'(¢).
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(@) (b)

planey=0 plane x=0 planey=0 planex=0

FiGgure 14. Elliptic paraboloid with n = % and m = 0; projections onto the planes y = 0 and x = 0;
see parameters in figure 13. (a) Elliptic paraboloid drawn with the successive contact lines on its
surface; (b) similar to (a) but the free surface deformation is shown; (c) elliptic paraboloid with the
successive intersection lines on its surface. Note the difference between the vertical and horizontal
scales.

6.2. Uniform acceleration of an elliptic paraboloid

In the case m = n = 1, the body acceleration is constant, U(t) = agt, and the elliptic
contact region expands homothetically, a(t) = kb(t), with b(t) increasing linearly in
time, b(t) = byot. Equations (5.28) and (5.29) give

f(r,0) = r*C(a), (6.18)

_a * [ OR? q(1 + gk?) 5 [ 1+ qk?
C(oc)—zE(e)/O (aq(q,a) ﬁ-i—%R (q,%) q(1+q)3> dg, (6.19)

2 .2
q [ cos*a  sin“a
R2 N = 75 )
(@) b%{H—qkz l—i—q]
The formulae obtained coincide with those derived in §6.1, which makes it possible
to write down the final result for the shape function as

(6.20)

f(x,y) = Ai1x* + By, (6.21)
where (see equations (6.5), (6.8) and (6.10))
o ,D(e) do ,D(e)
Al = —— |2—k"—= B =—|1 — . 22
T { k E(e)} ST~ { e (622)

We may conclude now that any elliptic paraboloid entering water with uniform
acceleration has an elliptic contact region which expands homothetically and linearly
in time.
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In order to solve the direct Wagner problem, we consider the equation for the
position of the entering body in the form

x2 y2 do 5

Comparing equations (6.21) and (6.23), we conclude that equation (6.13) for the
eccentricity e of the contact region is valid in the present case as well, and the
quantity by is given by

o (G0)12 D(e)]"”
b0_3<5) [1+k2E(e)] . (6.24)

Equation (6.15) is also valid in the case under consideration.

6.3. Impact of a cone

In the case m = 0, n = 1, the entry velocity is constant, U(t) = Uy, and the body
is pointed, f(r,o) = rC(x), where the function C(«) is given by (5.29). The contact
region is elliptic and expands homothetically, a(t) = kb(t), where b(t) = bot. For the
pointed body

_ Uy ["[dR q(1 4+ gk?) 1 1+ gk?
c =55 | ( o | I R [ A +q)3>dq, (625)

Rigo) = 4 N1 +49) (6.26)
’ bo /(1 + ¢q)(1 + gk2)’

O(c) = cos® a + k* sin’ «, (6.27)

where the integral can be expressed with the help of elementary functions. However,
the calculations are not as simple as before. We suggest returning to the general
formula (5.29) and presenting it as follows:

Uk [0(@)\'[1
C(a,e) = nE(Q) (b%k2> {MN(O,1,1)+A(oc)N(0,2,0)+B(oc)N(2,O,O) . (6.28)

0 qd’l/z(q+Q’1(oc))d+7’*1dq

N(A«’ K V) = 0 (q + 1)d+3/2—/1(q + k—z)d+1/2—u’ (6'29)
k2 sin® o cos?a m+1
Alx) = 0 B(a) = 20’ d= 5 (6.30)

In the case under consideration, m =0, n=1 and d = %, integrals (6.29) can be
evaluated analytically and (6.28) gives

Uy

Cle) =35 E@)

[51 cos> o+ S, sin® o + 53} (6.31)
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FiGURE 15. Cross-sections of the cone for different values of the parameter e, 0 < o < /2.

with
dg 2 ecosa

S = - ¢
! /0(1+qk2)1/71+qQ(oc) kecoso o T

S=/°° (+ak) o
2T ) 1+ 92T 490

L2 . (6.32)
1 n (1 — (1 +k?)sin oc) In 1 —esina
 sin’a 2esin’ 1+esina’
2ein2 e
s, :/ J1+q0(x) A LG (e sin 'oc l)lnl es%noc‘
(1+ q)? 2esino 1 +esina
In the axisymmetric case, ¢ = 0, we obtain
4
C(o,0) = 2 Y0 (6.33)
T b()

This result is in agreement with that of Shiffman & Spencer (1951), who studied the
axisymmetric problem of cone entry.

In order to solve the corresponding direct problem of the impact, we introduce the
function Cy(a, e) = (by/Uy)C(a, e) and consider the entry problem for a pointed body,
the position of which is described by the equation

z = AzCQ(OC, €)V — Upt. (634)

Here Uj is the body velocity, 4, is a given constant which specifies the deadrise angle
of the cone, and Cy(a,e) is the function defined above. Comparing (6.34) with the
equation for the entering body shape, f(r,«) = C(a)r, obtained within the inverse
Wagner problem, we conclude that the contact region in this case is elliptic with the
semi-axes being b(t) = Uyt/A, and a(t) = Ugkt/A,. Cross-sections of the body (6.34)
by horizontal planes z = zg, zy > 0, are described by the equation r = zy/(A4,Co(2, €)).
Curves r = 1/Cy(a, ) are shown in figure 15 for different values of the parameter e.
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VT T

FIGURE 16. Ratios ap)(t)/a(t) and b (t)/b(t) as functions of the parameter k, = A/B: a(t) and b(t)
are the semi-axes of the contact region Z(t) predicted by Wagner theory; a()(t) and by)(t) are the
semi-axes of the contact region Z(t) given by the strip theory.

6.4. Strip theory for elongated bodies

In the case of elongated bodies, strip theory is frequently used to obtain approximate
solutions of the three-dimensional impact problem. Within this theory the three-
dimensional impact process is approximated by a sequence of two-dimensional impacts
of each vertical cross section of the body. With the help of exact analytical solutions
obtained for the three-dimensional impact problem we can check the applicability of
the strip theory and give estimations of accuracy of approximate results.

The case of an elongated elliptic paraboloid is considered. The position of the
body entering liquid at the constant velocity Uy is described by equation (6.11), where
B > A now.

In the strip theory the body cross-sections y = y, are considered and the corre-
sponding two-dimensional impact problems are formulated for each cross-section, the
position of which is given as

2

2= 2 Up(t—t0),  to= U?Bz' (6.35)

The quantity ¢, indicates the time instant at which the cross-section y = y, reaches
the undisturbed water surface. The solution of the plane problem of the parabolic
contour entry was given by Wagner (1932). The half-width of the contact zone
is a(t,yo) = AJ2Uo(t —ty), t > to, the velocity potential in the contact zone is

b)(x,0,0,t) = —Up/a*(t, yo) — X2, |x| < a(t,yo), and the elementary hydrodynamic
force AF on the cross-section considered is given by

drn _,
AF = - | 5p@(t.30)Us| Ao, (6.36)

where Ay, is the thickness of the cross-section slice.
The contact line I'(5(¢) is given by the strip theory in the parametric form

Y = Yo, x = a(t, yo), (6.37)
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which gives
2 2

X y
=1
(A 2Upt)? + (B./Uot)?
It is seen that the contact region within strip theory is the ellipse with the semi-axes
aoy(t) = AJ2Uot and bp)(t) = B./Upt. The exact solution gives a(t) = bok\ﬂ and
b(t) = bo\/i, where k and by are defined by equations (6.13) and (6.14). The ratios
ap)(t)/a(t) and b()(t)/b(t) are independent of time and are depicted in figure 16 as

functions of the parameter k, = A/B. The following asymptotic formulae are valid as
k, — 0:

(6.38)

ap)(t) _

12 2
O = 1= 4k Ink, + 0K, (6.39)
bo(t) 1,0 >
by = Lk Ik, £ 0 (6.40)

In order to derive these asymptotic formulae, equations (6.15) and (6.16) were used.
Equation (6.16) is not exact but it approximates the more complicated equation
(6.13) with good accuracy for 1 — e% < 1. Equations (6.39) and (6.40) show that
strip theory overpredicts the length of the minor-axis of the contact region, a(t), and
underpredicts that of the major-axis, b(t). The result (6.40) is unexpected because
strip theory does not account for the piled-up effect at the line x = 0, which leads to
the equality b(»)(t) = b,(t), where b,(t) is the major semi-axis of the intersection curve
(t). Equation (6.40) indicates that for elongated bodies the ratio (b(t) — b,(t))/b(t) is
small. Strip theory determines the dimensions of the contact region with a relative
error of less than 3% for an elliptic paraboloid with 4 < B/10.

Using the definitions of the functions a(t,y), ax)(t) and by)(t), it is easy to check
that a(1,y) = ap)(1)[1 — y*b}(1)]"/% With the help of this equality the distribution
of the velocity potential over the contact region (6.38) can be presented within strip
theory as

2 2
do)(x,¥,0,t) = =Upy/a*(t,y) — x> = —an(z)(t)\/l — L (6.41)

X
a(zz)(t) b%z)(t)'

Taking into account that E(e) —» 1 as e —» 1 and comparing (6.41) with (4.10), we
obtain

do)(x,,0,1) = P(x,y,0,t) as e, — 1 (6.42)

at each point (x,y) of the intersection between the exact contact region Z(t) and
its approximation %)(t) with the boundary (6.38). The hydrodynamic force on the
entering body is given within strip theory by the formula

d [« by () N
Fa(t) = 5 (5o [ aeady (643)
—b()
which yields after calculations
Fp)(t) = 2npA*BU;\/ Upt. (6.44)

The exact formula for the hydrodynamic force on the entering elliptic paraboloid
follows from equations (4.12), (4.13), (6.13) and (6.14):

1 —¢?

F(t) = npB* U3/ Ut )

3/2
2D (6)} (6.45)
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FIGURE 17. The ratio F (k,) between the hydrodynamic force, F(t), given by the Wagner theory and
that, F5(t), by the strip theory, as function of the aspect-ratio factor k, of the entering elliptic
paraboloid. Solid line corresponds to the exact formula (6.47) and the dotted line to the approximate
formula (6.48).

With the help of equation (6.15), we obtain
F(t) = Fo)(t)F(A/B), (6.46)
33 Kk P
2E(e) [k2/k2+ 113> 7 B’

The function F(A/B) is depicted in figure 17. It is seen that F(4/B) — 1 as A/B — 0.
More details can be obtained using the approximate formula (6.16), which gives

. (2+k72,),/1+2k}2, 1— k4
F(k,) ~ = i (6.48)

2E()(1+l2yn T\ T2k

Fk,) = (6.47)

We conclude that F(k,) = 1+ O(k}z,) for elongated bodies, kf, —0 and F(1) =
1/m(3/2)%* ~ 0.585 in the axisymmetric case. Figure 17 shows a very small dis-
crepancy between the exact (6.47) and approximate (6.48) expressions for F. We
conclude that in the case of an elliptic paraboloid, strip theory can be safely used

to evaluate the hydrodynamic force on the entering body (10% discrepancy) when
A < B/4.

7. Conclusion

The inverse method has been used to construct solutions of the impact problem
using the Wagner approach. Within the framework of the inverse Wagner problem
the body velocity and the contact line between the liquid free surface and the surface
of the entering body are given, and we can determine the body shape and the liquid
flow. The method provides a wide range of exact analytical solutions in the case of an
elliptic contact region. It is proved that an elliptic paraboloid entering the liquid either
with a constant velocity or with a constant acceleration has an elliptic contact region.
It is shown how the inverse method can be used at the design stage. Experiments with
body shapes analysed in this paper, are planned. The analytical solutions obtained
are used to analyse the approach to the impact problem based on strip theory.
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The results of this paper are helpful both for the comparison and validation of
other approaches and for direct industrial application. They can be used to estimate
the slamming loads on structures with compound curvature for design purpose, for
example on the bow flare of FPSO and the stern part of a cruiser. The inverse method
can be used to solve the direct problem of impact only for simple shapes. In general
case other methods have to be employed.

The main obstacle to solving accurately the direct Wagner problem is closely
connected to the fact that this problem is nonlinear, despite the linearization of
both the equations of motion and the boundary conditions. The nonlinearity comes
from the Wagner condition which is the main feature of this approach. In order to
develop a general method to solve accurately the direct Wagner problem, we suggest
linearizing this problem on the basis of a known analytical solution and studying
the linearized problem first. The linearization can be carried out with the help of the
displacement potential instead of the velocity potential utilized in the present paper.
The linearized Wagner problem will be used to study the water entry problem for
almost axisymmetric bodies in Part 2 of our work, currently in preparation. Another
possibility is to linearize the original Wagner problem on the basis of the exact
analytical solutions obtained in the present paper.

The next step is to consider the linearization of the Wagner problem on the basis of
a solution obtained numerically (for example, on the basis of the solution described
in §5.1). This part of our work, Part 3 (also in preparation), is aimed at studying the
stability of particular solutions and optimizing the shape of a body subject to water
impact. The results of this research lead to a time-marching procedure, which will
enable the impact problem to be solved for smooth bodies of an arbitrary shape. It is
important to note that the procedure does not require iterations of the contact lines.

The problem of impact of non-smooth bodies, for example, pyramid- or star-
shaped ones, which are of practical interest, requires special attention. We intend
to develop further the inverse method with the help of functional transforms of
harmonic functions and to derive exact solutions of the Wagner problem for contact
regions with corner points. With these exact solutions to hand, it will be possible to
study the linearized Wagner problem for non-smooth bodies and to develop suitable
numerical algorithms to solve the original Wagner problem.

Mathematical analysis of regularity properties of the solutions of the Wagner prob-
lem would be highly desirable. These properties have to be taken into account for
developing accurate and economical numerical algorithms.

The main part of this work was carried out at the Lavrentyev Institute of Hydrody-
namics, Novosibirsk, during a sabbathical leave of Y.-M. S. from April to June 1999.
This visit was supported by the Conseil Général des Bouches du Rhone (France)
and by an industrial CEPM contract with partners Bureau Veritas, Institut Frangais
du Pétrole and Principia RD. Results of §5.3 were presented at the 15th Interna-
tional Workshop on Water Waves and Floating Bodies, Dan Caesarea, Israel, 2000.
A.A.K. acknowledges the support from RFBR (projects No. 00-01-00839 and No.
00-15-96162) and SB RAS (integrated grant No. 1).

Appendix. Limit analysis for the velocity potential on an elliptic disk

In this Appendix the limit of the coefficient C in equation (4.5) is determined from
the boundary condition (4.7) as ¢ — 0. The boundary condition on the body is first
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transformed in terms of the ellipsoidal coordinates

¢, =—Uz, at A=0, (A1)
where
« dé Cz
_ ) — A2
= [ erome @ o (A2
for /. > 0 as follows from equation (4.5). Using the equality (see §4)
z
== A3
2T 1) (A3)
and equation (A 2), we present the boundary condition (A 1) in the form
2C
lim z; - U|=0. A4
it { / @ +5 3/2g(5> T @A } (A%
Taking into account that
fim, s £0 (a9
in (A 4), the following equation is obtained:
2
C li =-U A6
in [ w5 - @r o) (A0

for the coefficient C. It is seen that difficulties may occur when both ¢ and A vanish.
In order to avoid these, we integrate in (A 6) by parts and arrive at the following
equation, where the singularity of the integrand has been removed:

o g(e)de
v=2ctim, [ ot Sty A7

We can now take the limit in (A7) when 2 — 0 and ¢ — 0 and decompose the
resulting integral into two standard ones:

d¢
A8
VECT @y E+ by (A9
and
JEde

I, = . A9
’ /o VIE+a)P(E+ b (8.3)

The first one, I, is given as (see Gradshteyn & Ryzhik 1994, 3.135.4)
1= s (@ +DYE(e) = 20K (e)] (A 10)

where the elliptic functions E(e) and K (e) are defined in §§4 and 6, respectively. The
second integral is first transformed into

d¢

—(12[1 =I3—a211, (All)
VEE+ a)(E + b7
where the integral I5 is equal to
2
Iy = (K(e) — E(e)). (A12)

(P —a)b
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Substituting I, I, and I5 into (A 7) with correct coefficients, we obtain the final result
as

_ Ua’h
"~ 2E(e)’

(A 13)
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